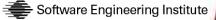

Trends in Internet Attack Technology and the Role of Artifact Analysis

JERT

Jason Milletary October 4, 2005

© 2005 by Carnegie Mellon University

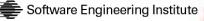


Overview

Attack Trends

Role of Artifact Analysis Capabilities

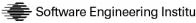
Typical Artifact Analysis Capabilities



Attack Trends

A high level review of the major attacks trends that we have observed at CERT

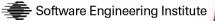
- Focus on end-user attacks
- Emphasis on use of compromised resources
- Maturation of economic incentive



End-User Attacks

The rapid increase of phishing and spyware incidents demonstrate a shift towards end-user attacks

- Applications vs. Infrastructure
 - Web browsers
 - Instant Messaging clients
 - Email clients
 - Peer-to-peer clients
- Attack vectors remain the same
 - Vulnerability exploitation
 - Social engineering


Use of Compromised Resources

2003: Focus on propogation

- Email attachments (e.g., SoBig)
- Worms (e.g., Blaster, Slammer)

2004: Focus on use of resources

- Information stealing
- DDoS agents
- Services
- Remote control
- Survivability

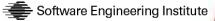
Information Stealing

Evolving mechanisms

- Keystroke loggers
- Web form scraping
- Screen captures
- HTTP URI interception
- Microsoft Protected Store enumeration

Information of Value

- Authentication credentials
 - Online banking sites
 - Financial services sites
 - Payment system sites
 - E-government
- Email addresses
- Documents (PDF, Word, Excel, etc.)


Distributed Denial of Service (DDoS)

DDoS Agents

- Technology is not new
- Refining command and control
- Refining modus operandi

Use of DDoS

- Extortion
- Corporate sabotage

Services

Email Gateways

- Deployment of email delivery infrastructure
- SPAM, Phishing, malware delivery
- Distributed and disposable
- Track and trace becomes difficult

Servers

- Websites for phishing and/or malware distribution
- Proxy services
- FTP server for "warez" or collection of stolen data

Remote Control

Botnets

- Integration of functionality
- Predominantly IRC-based command and control
 - Emergence of other protocols (HTTP,P2P,IM)
- Mobile, adaptable, distributed

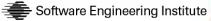
Survivability

Attack chaining

- Combinations of social engineering and vulnerability exploitation
- Multiple components, one goal (money)

"Secure" compromised resources

- Disable anti-virus, personal firewalls, etc
- Disable other malware
- Secure system (patch, disable services)
- Hide malware presence (e.g., rootkits)



Economic Incentive

The use of malware as tools for crime has promoted the development of a sophisticated economic system

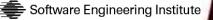
- Follow the money
 - Financial gain is growing incentive for attacks
 - Low risk of legal repercussions
 - Legal and law enforcement environments critical
- Skills specialization
 - Malware authoring
 - Resource acquisition / malware deployment
 - Attack execution
 - Data recovery



What is Artifact Analysis?

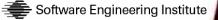
The study of Internet attack technology, otherwise known as malicious code, or "malware"

- Viruses
- Worms
- Trojan horses
- Rootkits
- Botnets
- Denial-of-service tools
- Vulnerability exploits



Who does Artifact Analysis?

Artifact analysts include

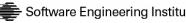

- Computer Security Incident Response Teams
- Security product vendors (AV, IDS/IPS, etc.)
- Managed Security Service Providers
- Software vendors
- Enterprises / organizations
- Governments, law enforcement
- Attackers

Roles of Artifact Analysis

- Incident response
- Vulnerability analysis
- Attack technology trends
- Threat assessment
- Capability assessment
- Law enforcement / forensics
- Signature generation
- Attacker competition

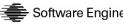
Role: Incident Response

One of the roots of artifact analysis can be found in the incident response process


- Malicious code often involved in security incidents
- Need to understand attack methods used in incident in order to respond
- Communicate threats, impact, and protective measures to constituency

Role: Vulnerability Analysis

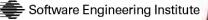
Artifact analysis can provide insight into the mechanics and lifecycle of vulnerability exploitation


- Exploits for vulnerabilities are developed, improved, and re-used
 - Scope of vulnerability can change
- Existence of working exploit can escalate response to a vulnerability
- Understanding an exploit can expand understanding of vulnerabilities
 - Current remediation may be insufficient

CFRT **Role: Attack Technology Trends**

Artifact analysis provides insight to the constantly evolving nature of internet attacks

- Effective attack techniques are re-used
- Attack techniques evolve
 - New targets of opportunity
 - Resist countermeasures
- New classes of attack techniques can present challenges for extended periods of time
- Understanding enables focus on classes of security issues



Role: Threat Assessment

Artifact analysis can help direct incident response policy by helping to determine threat

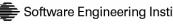
- Determining current threat posture requires, in part, understanding of attack technology
- Which malware threats require drop-everything action?
 Which require long-term analysis? Which require no action?
- What is the threat assessment for potential or anticipated malware capabilities?

CERT

Role: Capability Assessment

Understand the capabilities of the attacker community provides insight to those designing and implementing security mechanisms

- Malware varies in complexity and capability
- Classes of attack techniques vary in maturity of available attack tools
- Development and deployment of attack tools require different skill sets
- Assessing capability requires understanding and contrasting attack technology and methodology


Role: Law Enforcement / Forensics

Artifact analysis can add value to law enforcement and forensics investigations

Malware analysis may provide evidence of crime

Compromised financial information

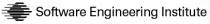
- Collection of known malware used as comparison set for forensics discovery
- Forensics recovers artifacts, artifact analysis discovers functionality of recovered artifacts
 - Additional evidence for investigation or prosecution



Role: Signature Generation

Security product vendors rely on artifact analysis to provide timely and accurate detection/prevention

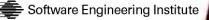
- Intrusion Detection / Prevention
 - Signatures based on classes of attacks
 - Classes of attacks evolve
 - Produce signature targets
 - Aid understanding of triggered signatures
- Anti-Virus / Spyware detection
 - Signatures generated through artifact analysis



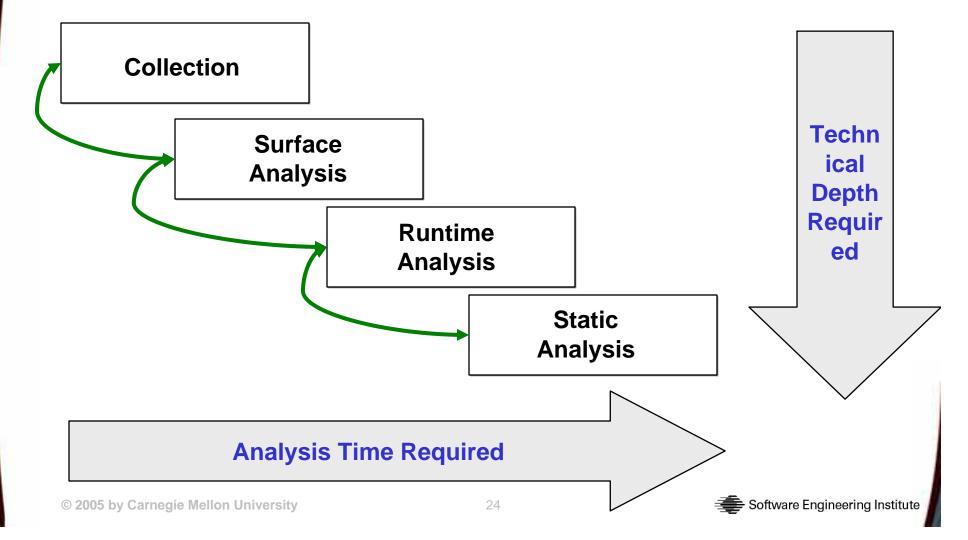
Role: Attacker Competition

In addition to countering responses from the security community, intruders are driven by competition with each other

- Exploiting deployed malware
 - "Stealing" compromised resources
 - Netsky vs. Mydoom
 - Botnet hijacking
 - Adaptation of functionality
- Competition for resources
 - SMTP relay and proxy for SPAM/Phishing
 - Denial-of-service agents
 - Proxies
 - Malware launch points
 - Compromised resources / information



Degrees of Analysis / Trust


Artifact analysis produces understanding and insights

- Degrees of required understanding vary
 - Answering specific questions
 - Authoritatively describing complete functionality
- Consumers must trust analysis
- Artifact analysis capability is a way to create targeted trusted information

Increased Understanding Requires Increased Resource

Scope of work Collecting artifacts Technical artifact analysis Analyzed Collected **Artifacts**

 $\ensuremath{\textcircled{}^\circ}$ 2005 by Carnegie Mellon University

Software Engineering Institute

Prioritization (Deciding What to Analyze)

- Organizational Mission (Qualitative)
- Numeric Weights (Quantitative)
 - Scope How widespread is the artifact
 - # of reported incidents
 - # of sites
 - Propagation
 - Does the artifact spread, if so, is it automated spread or does it require human intervention (ex. Emailing to other users)?
 - Damage Potential
 - Is the malware destructive to data or availability of resources?
 - Does the malware collect data that could potentially damage the target (ex. Bank account related info of the users)?
 - Impact
 - Difficulty of Remediation
- Other Areas of Interest to your Organization

Surface Analysis

Surface analysis includes:

- Quick checks to identify and characterize an artifact
 - File type, MD5 checksum, file size, filename
- Public source analysis
 - Internet searches, mailing lists, AV reports, etc.
- Easily identifiable contents
 - Review of text files
 - Review of source code (if available)
 - Review of strings output
- Comparative analysis against already obtained artifacts
 - String comparisons
 - Comparisons of file sets with similar attributes

Automation, automation, automation...

© 2005 by Carnegie Mellon University

Runtime Analysis

Derive artifact function from lab testing

- Starting point based on surface analysis
- Sometimes difficult to uncover and test all features

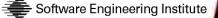
Rapidly deployable test environments

- In-office virtual labs for easy access
- Sharable image library for multiple platforms
- Undoable disk images always a fresh install
- Virtual network with DHCP, DNS, SMTP, HTTP, FTP, IRC, packet mangling capabilities, etc.
- Repository of vulnerable software

Static Analysis

Determine specific or full functionality of an artifact

- When source code is available, interpreting it is the fastest path to complete understanding
- When only binary executables are available, disassembly and reverse engineering are required
- Comprises several steps
 - Disassembly of an executable binary
 - Understanding the assembly
 - Decompilation rewriting as source code
- Provides a complete picture of an artifact
 - Time intensive
 - Requires great technical depth
 - There are no secrets when complete

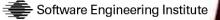

Software Engineering Institute

Conclusions

- Internet attacks continue to evolve in the fact of countermeasures and to meet new targets of opportunity
- Artifact analysis can be valuable for those organizations who need to produce insight on the functionality of malicious code
- Artifact analysis capability should be customized to fit an organization's mission and resources

CERT[®] Contact Information

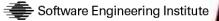
CERT Coordination Center Software Engineering Institute Carnegie Mellon University 4500 Fifth Avenue Pittsburgh PA 15213-3890 USA


Hotline: +1 412 268 7090

CERT personnel answer 8:00 a.m. — 5:00 p.m. EST(GMT-5) / EDT(GMT-4), and are on call for emergencies during other hours.

Fax: +1 412 268 6989

- Web: http://www.cert.org/
- Email: cert@cert.org


© 2005 by Carnegie Mellon University

Questions? Feedback?

